

ActiveX API Guide
Version 12.7.1

Sterling Trading Tech offers advanced API development integration as part of its Sterling Trader Pro
platform. In order to work with the developers, we have provided an API guide, examples and technical
support. We are continuously working to develop and advance our API functionality along with our
front-end platform. In this guide you will find some basic examples of code to work with our API along
with the fundamental library of components. This guide is primarily geared toward development in VB.
Development in other languages is possible but is not supported as well by the API interface. Within the
guide we will refer to functions as methods and members as properties. More properties and objects
exist in the type library than you do in this guide mostly due to backward compatibility issues.

In addition to this guide developers have access to our online examples and our support team.
Questions concerning the API can be directed to support@sterlingtradingtech.com or 312-346-9600 x
290. If you wish to be added to our developers email list, please send a request to
support@sterlingtradingtech.com with your email address and the subject, “Add to STI API Developers
List”.

Table of Contents
Referencing the Type Library .. 2
The Visual Basic 6.0 Development Environment .. 2
Development in Alternative Environments .. 3
Sterling ActiveX API Performance Considerations .. 4
Visual Basic Coding Examples ... 4
Visual C# Coding Examples ... 5
Tracking Orders Using a Client Order ID .. 7
Handling Rejections in the API ... 8
Backward Compatibility and Algos .. 8
Sterling ActiveX Object Library ... 9
STIApp ... 16

Referencing the Type Library

ActiveX components can contain numerous classes, each with one or more programming interfaces.
These interfaces can have methods and properties. The components can also have many enumeration
constants which are symbolic names for constants that are passed or returned over the interface. For
name scoping and management, each application defines its own group of these definitions into a type
library. The type library is used by programming languages to check the correctness of calls to the
component and it is used by COM when it creates the data packet which conveys a method call from
one Windows process to another. (This data packet creation is called marshalling.)
You must reference the Sterling Type Library to communicate with the Sterling Trader Pro System. This
type library gets installed when you install the Sterling Trader Pro. Before you can write Visual Basic
code to communicate with the Sterling System you must reference the type library from within your
Visual Basic project.

To reference these type libraries from Visual Basic, do the following:

1. From the Visual Basic Menu Bar, find the References menu item. Depending on the version of Visual
Basic that you are running, this is either under the Project (VB6) or under the Tools (VBA) menu.
2. Select this menu item to bring up the references dialog. This dialog lists every registered type library
on the System. This list is divided into two groups. The type libraries which are already referenced by
the project are listed first. All of the remaining registered system type libraries are listed after that in
alphabetical order.
3. Find the type library labeled "Sterling 1.0 Type Library" and click the check box to add the reference
to your project. (Simply selecting the line is not sufficient; you have to check the box.)
4. Click OK to activate these changes.

After referencing this library, you can use it immediately. Also, if you reopen the references dialog, you
will see that this library has been moved up to the top of the list with the other referenced libraries.

Each type library has a name, known as the Library Name, that is used in programming to qualify (or
scope) all names used within it (such as components, methods, constants, and so on). Take note,
however, that this name is not necessarily identical to the name of the file containing the type library.
Visual Basic will look up the names in your program by going through the referenced type libraries in
the order that they are listed in the references dialog. If two type libraries contain the same name, then
Visual Basic will get its definition from the first library in the list, unless the name is qualified with a
library name.
The Sterling library name is "SterlingLib". You can use this to qualify any identifier defined in that
library.

The Visual Basic 6.0 Development Environment

After the type library is referenced, its definitions become available to the Visual Basic Object Browser.
From the Visual Basic development environment, the Object Browser is typically available via a toolbar
icon, a menu selection or the F2 key.

The Object Browser can show all referenced type libraries at one time or can focus on any one of them.
To focus on the base Sterling Type Library, select "SterlingLib" from the drop-down box in the upper
left. The left pane of the Object Browser will then show only the component classes, interfaces and
enumerations for SterlingLib. If you select a component (such as STIOrder) on the left, its methods and

properties will be shown on the right. When you select an item in the right pane, more complete
information (such as the parameters to pass to a method and a brief description of the method) are
shown at the bottom.

Referencing a type library also activates Visual Basic Intellisense™ for all programming language
names in the library. For instance, as you begin to type in a name like SterlingLib.STIOrder, you will
see the Visual Basic editor display a pop-up list of possible names to complete the typing. As you code
a method call, Visual Basic will show you each parameter that you need to provide.

Development in Alternative Environments

Sterling allows for the development in languages other than VB 6.0. This however does come with
some setbacks. For example, development in .net based languages will cause a delay in data
transmission due to the inefficiencies in communicating between .net and the ActiveX events. We have
dealt with this inefficiency by adding the XML functions to our API. They allow you to receive events
more quickly. Depending on your VS Version, you may need to open your project by right clicking the
program and then selecting Run as administrator.

Using XML:
In order to receive the XML events, you will need to first set the mode to XML. To do this

you will go under STIAPP on page 16 in the guide and set SetModeXML to true. Then you will
need to choose the proper event. One such XML event is OnSTIQuoteUpdateXML vs
OnSTIQuoteUpdate. You will also need to check for the XMLSerializer file with IO.File.Exists.
Finally, you will need to decode the XML.

Decoding the XML:
In C#:

Private void OnSTIQuoteUpdateXML(ref string strQuote)
XmlSerializer xs = new
XmlSerializer(typeof(sSterlingLib.structSTIQuoteUpdate)); Sterling
Lib.structSTIQuoteUpdate sstructQuote =

(SterlingLib.tructSTIQuoteUpdate)xs.Deserialize(new
stringReader(strQuote)); In VB.NET

Private Sub OnSTIQuoteUpdateXML(ByRef bstrQuote As String)
Dim xs As New
XmlSerializer(GetType(SterlingLib.tructSTIQuoteUpdate) Dim sr
As New StringReader(bstrQuote)
Dim structQuote As SterlingLib.structSTIQuoteUpdate = DirectCast(xs.Deseriialize(sr),

SterlingLib.structSTIQuoteUpdate)
sr.Close()

The members of structQuote can now be accessed.

Sterling ActiveX API Performance Considerations

The ActiveX API delay has been reduced to produce a maximum of 20 orders per second.

Cancel requests can now be sent for any open orders which have not had any activity within the past
ten seconds regardless of their current state; i.e. – no further order confirm messages are being
received from the exchange. Therefore, the order state says “Pending” – the order appears to be
“frozen”. Such an order can now be canceled after 10 seconds, either from within the ActiveX API itself
or from the Trading Monitor screen.

Visual Basic Coding Examples

Create a reference to the Sterling ActiveX Library
- Select Project • References… from the menu.
- Select Sterling 1.0 Type Library from the Available References.
- If the Sterling 1.0 Type Library is not found, select Browse and find the Sterling.tlb file.

Enable Events
- Place the following line in the general section of your code to declare the object:

Dim WithEvents m_STIEvents As STIEvents
- Place the following line in an initializing procedure, such as the Form_Load procedure:

Set m_STIEvents = New STIEvents

- Now select m_STIEvents in the Object drop down control in your code window (top left drop down
control). You will see the available events in the Procedure drop down control (top right drop down
control). Select the event that you would like to catch, and it will be inserted into your code. It should
look something like this:

Private Sub m_STIEvents_OnSTIOrderUpdateMsg(ByVal oSTIOrderUpdateMsg As
ISTIOrderUpdateMsg)

- Use the oSTIOrderUpdateMsg object to gather the information from the message.

Sending an Order
- Create the order object with the following code:

Dim order As StiOrder
Set order = New STIOrder Dim storder As structSTIOrder

- Fill the oroder properties with order information
storder.Account = “ACCT7” storder.Side = “B”
storder.Symbol = “CSCO” storder.Quantity = 500 storder.PriceType = ptSTIMkt storder.Tif = “D”
storder.Destination. = “NYSE”

- Create CLOrderId:
Dim theTime As SYSTEMTIME
GetLocalTime theTime
Storder.bstrClOrderID = storder.Account & ostheTime.wTime.wMonth & theTime.wDay &
theTime.wHour & theTime.wSecond & theTime.wMilliseconds

- Check for Errors
Text1.Text = orderSubmitOrderStruct(os)

Canceling an Order
Place the following line in the general section of your code to declare the object:

 Dim m_STIOrderMaint As STIOrderMaint

- Place the following line in an initializing procedure, such as the Form_Load procedure:

 Set m_STIOrderMaint = New STIOrderMaint

- Call the CancelOrder Method of the STIOrderMaint object for passing the required order information.

You can use either the OrderRecordID or the ClOrdID to cancel an order.
- OrderRecordID is the value that you get back in the OrderUpdateMsg. This is a unique order ID
generated by the Sterling Trader® System to track an order.
- OldClOrdID is the client-generated order ID passed-in when the order is first sent.

- ClOrdID is an optional field. It is the ActiveX API client-generated order ID used for canceling the
order record. It must be a unique ID, and it must remain unique over multiple trading days.

- To cancel with the Client Order ID:

 m_STIOrderMaint.CancelOrder “<Account>”, 0, “<Client Order Id of Order to cancel>”,
 “<Client

Order Id of new cancel order record>”

- To cancel with the Record ID:

 m_STIOrderMaint.CancelOrder “<Account>”, <Record ID>, “”, “”

Visual C# Coding Examples

Create a reference to the Sterling ActiveX Library
- Select Project • Add Reference… from the menu.
- Select Sterling 1.0 Type Library from the COM objects category.
- If the Sterling 1.0 Type Library is not found, select Browse and find the Sterling.tlb file.

Enable Events
- Place the following lines in your class declaration to declare the objects:
 private SterlingLib.STIEvents m_STIEvents;
 private SterlingLib.STIApp m_STIApp;

- Place the following lines in an initializing function, such as the Form constructor:
 m_STIEvents = new SterlingLib.STIEvents();
 m_STIApp = new SterlingLib.STIApp(); m_STIApp.SetModeXML(true);

- Now assign a handler for OrderUpdate event (XML parsing example is given on the page 5):
 stiEvents.OnSTIOrderUpdateXML += new
 SterlingLib._ISTIEventsEvents_OnSTIOrderUpdateXMLE
 ventHandler(StiEvent_OnSTIOrderUpdateXML);

- Use the SterlingLib.structSTIOrderUpdate object to gather the information from the message.

Sending an Order
- Create the order object with the following code:
 SterlingLib.STIOrder order = new SterlingLib.STIOrder();
 SterlingLib.structSTIOrder storder = new SterlingLib.structSTIOrder();

- Fill the order properties with order information:
 storder.bstrAccount = “ACCT7”; storder.bstrSide = “B”;
 storder.bstrSymbol = “CSCO”;
 storder.nQuantity = 500;
 storder.nPriceType = SterlingLib.STIPriceTypes.ptSTIMkt;
 storder.bstrTif = “D”;
 storder.bstrDestination = “NYSE”;

- Create ClOrderId:
 storder.bstrClOrderId = “ACCT7”
 + DateTime.Now.Year
 + DateTime.Now.Month
 + DateTime.Now.Day
 + DateTime.Now.Hour
 + DateTime.Now.Minute
 + DateTime.Now.Second
 + DateTime.Now.Millisecond;

- Submit order and check for errors:
 int res = order.SubmitOrderStruct(storder);

Canceling an Order
- Place the following lines in your class declaration to declare the objects:

 private SterlingLib.STIOrderMaint m_STIOrderMaint;

- Place the following lines in an initializing function, such as the Form constructor:

 m_STIOrderMaint = new SterlingLib.STIOrderMaint();

- Call the CancelOrder Method of the STIOrderMaint object for passing the required order information.

You can use either the OrderRecordID or the ClOrdID to cancel an order.
 - OrderRecordID is the value that you get back in the OrderUpdateMsg. This is a unique order
ID generated by the Sterling Trader® System to track an order.
 - OldClOrdID is the client-generated order ID passed-in when the order is first sent.

 - ClOrdID is an optional field. It is the ActiveX API client-generated order ID used for
 canceling the order record. It must be a unique ID, and it must remain unique over
 multiple trading days.

To cancel with the Client Order ID:

 m_STIOrderMaint.CancelOrder(“<Account>”, 0, “<Client Order Id of Order to cancel>”,
 “<ClientOrder Id of new cancel order record>”);

To cancel with the Record ID:

 m_STIOrderMaint.CancelOrder(“<Account>”, <Record ID>, “”, “”);

Tracking Orders Using a Client Order ID

The Client Order ID is used for the purpose of assigning an ActiveX API client-generated ID to an
order before that order is initially sent. The Client Order ID is an optional field – one that functions
as a tool for helping ActiveX API clients track orders. It is one of a number of order IDs used by the
Sterling Trader® System; each of the following fields listed below is available for the purpose of
tracking orders by the system:

1. ExchClOrderIS = is generated by the Sterling Trader® System; then sent to the exchange.
2. ExchOrderID = is exchange generated.
3. OrderRecordID = is an internal record ID generated by the Sterling Trader® System; it is

guaranteed to be unique, relatice to other OrderRecordIDs, for multiple trading days.
4. ClOrdID is a recommended field. It is the ActiveX API client-generated Order ID used for

tracking the order record. It must be designated as a unique ID, and must remain unique
over multiple trading days.

5. Please remember NOT to use commas (,), equal signs (=), or tilde (˜)as part of your
ClientOrder ID.

The Client Order ID must be assigned to the ClOrderID property of the STIOrder object before
you call the STIOrder SubmitOrder function. This ID must be unique over multiple days. For
instance, you could use the combination of Account + TimeStamp(to the millisecond) + Counter.
This would provide a unique ID that would allow for orders to be sent within the same millisecond
and over multiple days.

STIEvents

OnSTILinkSymChange This event occurs when the symbol of a link group is changed on the front end
or in the API.

OnSTIDrop This event is fired when a symbol is dragged out of a Sterling window and dropped.

OnSTIOrderConfirm This event is fired when an order submitted into Sterling Trader Pro is received by
the destination.

OnSTIOrderReject This event is fired when an order is rejected by the Sterling Server level.

OnSTIOrderUpdate This event corresponds to any change on an order. The values in this update will
correspond to the aggregate of the order, i.e. it will show the cumulative executed quantity rather than
the single executions quantity.

OnSTITradeUpdate This event is fired for each execution the order received and contains the data for
that execution

Handling Rejections in the API

Orders will sometimes be rejected. In the API environment you will want to be able to handle these
rejections so that they can be corrected. Within the API environment four different levels of rejection are
possible. The first is the return on the SubmitOrder. Anything other than zero will be an error code. The
second is the OnSTIOrderReject event. This event is triggered when the order is rejected in Sterling.
The third is a backend rejection at Sterling which will change the status of the order to Rejected
(STIOrderStatus = 12). This is also the case with an exchange reject, the fourth and final level of
rejection.

The STIOrder SubmitOrder function will send back a return code indicating the success or failure of an
order’s admittance into the Sterling Trader® System. The rejected order will not appear in the trading
monitor or any GUI rejections. If the return code is a negative number, then the order failed and was not
sent. The negative number of the return code will correspond to one of the defined error code values
that are found in the “SubmitOrder Error Codes” section on page 18. If the return code is not a negative
number, then the order was sent from the Sterling Trader® System to the exchange successfully. It is
absolutely necessary to include this function in your program if
it is going to be self contained and not rely on the front end for the messages.

The second level of rejections will come as the event, OnSTIOrderReject. This occurs as the order is
received by the DB. However the order will not write to the trading monitor if rejected at this level.
Within this event the nRejectReason will define the cause of the rejection. This will be a positive
integer. This value corresponds to those listed on page 17 under STIRejectReason. The third level
occurs when the value of the STIRejectReason is rrSTIAccessDenied (3). To see the cause of this you
will need to view the bstrText from the OnSTIOrderReject.

The next level of rejections is the Sterling backend. This level and the fourth level, exchange rejections,
operate the same. Both will be seen as part of the OnSTIOrderUpdate event. This will show as part of
the nOrderStatus the STIOrderStatus of 12 is the indication that the order was rejected. To get more
information on the cause of this rejection you will need to also pull The STIOrderUpdate property for
bstrLogMessage. This message will be the best source for an explanation on the reject but it may not
always be clear.

Backward Compatibility and Algos

In order to make this guide as easy to understand and concise as possible some rarely used and
obsolete functions were removed. These are potentially useful to those working on a special program or
updating an existing project. In order to keep this data available a new backward compatibility API
guide has been created.

Sterling ActiveX Object Library

STI Order Methods
long GetQuoeCount()
long SubmitOrderStruct(structSTIOrder *pOrder)
long ReplaceorderStruct(structSTIOrder *pOrder, long nOldOrderRecId, BSTR bstroldClOrderId)
 1. While both RecID and ClOrderID can be used ClOrder is the recommended option.
 2. The only fields that can be changed are Price (LmtPrice, StpPrice, and PriceType) and
Quantity. Other fields must match the original order, with the exception of the ClOrderID which should
be unique.
HRESULT ClearOrderStruct(structSTIOrder p*Order)

StructSTIOrder

Properties (Read Only) Type
bstrSide BSTR
bstrSymbol BSTR
bstrAccouont BSTR
nPriceType long
bstrTif BSTR
nQuantity long
bstrDestination BSTR
bstrClOrderIS BSTR
flmtPrice double
nDisplay long
fDiscretion double
bstrExecInst BSTR
fPegDiff double
fTrailAMT double
fTrailInc double
fStpPrice double
nMinQuantity long
bstrExecBroker BSTR
bstrUser BSTR
bstrCurrency BSTR
bstrOpenClose BSTR
bstrMaturity BSTR
bstrPutCall BSTR
bstrUnderlying BSTR
bstrCoverUnover BSTR
bstrIntrument BSTR
fStrikePrice double
bstrLocateBroker BSTR
bstrLocateTime BSTR
nLocateQty long
bstrListingExchange BSTR
nParentRecordId long
bstrBatchID BSTR

Struct (UDT)

Description
See section Side for values (page 20)
The options or equities symbol.
The account exactly as it appears in Sterling.
See Price Types for values (page 20)
See TIF for values (page 20).
The number of shares (or contracts)
The destination as it appears on the Sterling system ex. ARCA
Recommended field. Use this field to track orders(page 5)

If price type is set to ptSTILmt this will be the limit value.
Send hidden (0), Reserce (qty displayed) and visible if blank
Price discretion on a limit order.
Filed for specifying Special Order Designations (See page 23)
PEG-If price type is set to ptSSTIPegged this will be the
discretion T-STP-Amount by which you want to trail the last
T-STP-The value-change needed to trigger an update. On
triggerprice STP-The triggerprice on a STPor SS-STP order.
MinimumFillquantity Preference
(Client-defined field)

O=Open, C=Closed
YYYYMMDD
P=Put, C=Call
Underlying equities Symbol C=Covered,
U=Uncovered
For instrumental values (see page 22)
Options strike price

Text field for Broker information. Text
field for locate time information.
Text field for locate quantity information. The
listing exchange.
RecordId of the order to be replaced. Used when splitting orders in
the order desk manager.

STIPosition
Events

void OnSTIPositionUpdate (structSTIPositionUpdate* structPositionUpdate) void
OnSTIPositinUpdateXML(BSTR* bstrPosition)
void OnSTIShutdown()

Methods
HRESULT RegisterForPositions() HRESULT DeRegisterPositions() HRESSULT GetCurrentPositions()

structSTIPositionUpdate GetPositionInfoStruct (BSTR bstrsymbol, BSTR bstrExch, BSTR btrAccount)
For bstrExch Black, ‘*’, or ‘E’ = Equity ‘O’ = Options ‘F’ = Futures ‘X’ = Forex
long GetQueueCount()
long GetPositionList(structSTIPosUpdate()arrayPos)
long GetOptionsPosList(BSTR bstrUnderlyingSym, structSTIPosUpdate() arrayPos) long
GetPosListBysym(BSTR bstrSymbol, sstructSTIPosUpdate() arrayPos)

If a symbol is not specified, GetOptionsPosList() returns all options positions; GetPosListBySym returns
all positions.

structSTIPositionUpdate

Properties (Read Only)
bstrSym
bstrAcct
bstrInstrument
nOpeningPosition
nSharesBot
nSharesld
nSharesSldLong
nSharesSldShort
nTicketsBot
nSticketsSld
nTicketsSldLong
nTicketsSldShort
fClosePrice
fDollarsBot
fDollarsSld
fDollarsSldLong
fDollarsSldShort
fPositionCost
fPremiumMultiplier
fReal
nSharesPerContract
nPremiumMultiplier
bLast
bMsgSnapShot

Type
BSTR
BSTR
BSTR
long long
long long
long long
long long
long
double
double
double
double
double
double
double
double
long long
VARIANT_BOOL
VARIANT_BOOL

Description
Symbol
Trading account
Position instrument
The position in the account to start the day.
Number of Share purchased
Number of Shares Sold.
(nSharesSldLong+nSharesSldShort) Number of Shares
sold long this is a component of nSharesSld. Number of
Shares sold short this is a component of nSharesSld. Buy
side executions
Sell and Sell Short executions
Sell executions
Sell Short executionos
Yesterday;s close
The total cost of BUY orders
The total of
fDollarsSldLong+DollarsSldShort The toal
cost of SELL orders
The total cost of SHRT orders
The total of fDollarsBot+fDollarsSld
This is the multipler for options positions. This is for non-integer return
values. This is the Realized Proft/Loss value.
Options field Number of underlying shares per options contract
This is the multiplier for options positions. For non-integers see
fPremiumMultiplier Indicates this is the last of a list of events because of a
request (GetCurrentPositions())
Indicates that event is due to a request (GetCurrentPositions()) not a position
change.

Not all position fields are provided some need to be calculated.
Example: Position = nOpeningPositiion + (nSharesBot – nSharesSld
STIOrderMaint

Methods

HRESULT CancelOrder(BSTR bstrAccount, long OrderREcordId, BSTR bstrOldClOrderId, BSTR
bstrClOrderId) HRESULT GetOrderInfo(BSTR bstrClOrderId, structSTIOrderUpdate*
structorder):
HRESULT GetOrderList(VARIANT_BOOL bOpenOnly, SAFEARRAY(structSTIOrderUpdate)
*arrayOrder, long *lCount) HRESULT CancelAllOrders(structSTIICancelAll*VARIANT_BOOL
bExtendingOnly, BSTR bstrInstrument, BSTR bstrSymbol, BSTR bstrAccount):

A blank field in ssymbols or account specifies all symbols or accounts,
bExtrendingOnly if true will only cancel orders that would extend on current
positions.

HRESULT CancelSuturesOrders(BSTR bstrAccount, long OrderRecordId, BSTR bstroldClOrderId,
BSTR bstrClOrderId): HRESULT CancelOptionsOrder(BSTR bstrAccount, long OrderRecordId,
BSTR bstrOldClOrderId, BSTR bstrClOrderId): HRESULT CancelForexOrder(BSTR bstrAccount,
long OrderRecordId, BSTR bstrOldClOrderId, BSTR bstrClOrderId): HRESULT
GetEquityTradeList(SAFEARRAY(structSTITradeUpdate) *arrayTrade, long, *lCount):
HRESULT GetFuturesTradeList(SAFEARRAY(structSTITradeUpdate)
*arrayTrade, long, *lCount): HRESULT
GetForexTradeList(SAFEARRAY(structSTITradeUpdate) *arrayTrade, long,
*lCount):
HRESULT GetFuturesOrderList(VARIANT_BOOL bOpenOnly, SAFEARRAY(structSTITradeUpdate)
*arrayOrder, long,
*lCount):
HRESULT GetOptionsOrderList(VARIANT_BOOL bOpenOnly, SAFEARRAY(structSTITradeUpdate)
* arrayOrder, long,
*lCount):
HRESULT GetForexOrderList(VARIANT_BOOL bOpenOnly, SAFEARRAY(structSTITradeUpdate) *
arrayOrder, long,
*lCount):
HRESULT CancelOrderEx(BSTR bstrAccunt, long OrderRecordId, BSTR bstrOldClOrderId, BSTR
bstrClOrderId, BSTR bstrInst, long *lRetVal);
HRESULT GetOrderListEx(structSTIOrderFilter* pFilter, SAFEARRAY(structSTIOrderUpdate)
*arrayOrder, long
*lCount)
HRESULT GetTradeListEx(structSTIOrderFilter* pFilter, SAFEARRAY(structSTIOrderUpdate)
*arrayOrder, long
*lCount)

1. Returns include – 16 (Pro is offline) and -37 (Multiple sub-seconod replace and/or cancel
attempts)

STIEvents

Events
void OnSTILinkSymChange(structSTILink* structLink) void OnSTIDrop(structSTIDrop* structDrop)
void OnSTIOrderConfirm(structSTIOrderConfirm* structOrderConfirm) void
OnSTIOrderReject(structSTIOrderReject* structOrderReject)

void OnSTIOrderUpdate(structSTIOrderUpdate* structOrderUpdate) void
OnSTITradeUpdate(structSTITradeUpdate* structTradeUpdate) void OnSTITradeUpdateXML(BSTR*
bstrTrade)
void OnSTIOrderUpdateXML(BSTR* bstrOrder) void OnSTIOrderRejectXML(BSTR* bstrOrder) void
OnSTIOrderConfirmXML(BSTR* bstrOrder) void OnSTIShutdown()

Methods
MeHRESULT SetOrderEventsAsStructs(bool bStruct)

structSTIDrop Struct (UDT)
Properties (Read Only)
bstrSymbol
bstrUnderlying
nGroup

Type
BSTR
BSTR
long

Description
Symbol you wish to link
Underlying equity symbol for Options
Link group on Sterling you wish to link the symbol
into.

structSTIOrderConfim Structs (UDT)

Properties (Read Only)
bstrAccount
bstrClOrderId
bstrExchClOrderId
bstrExchOrderId
bstrExchOrderId2
nstrInstrument
bstrMsgConfirm
nOrderRecordId

Type
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
long

Description
The name of the sterling account the order was placed
in. Trader generated order ID

The trade type (equity or option)
Text message for the confirm
Order ID generated by Sterling

 structSTIOrderReject Struct (UDT)
Properties (Read Only)
bstrAccount
bstrBatchId
bstrClOrderId
bstrCoveruncover
bstrDestinationo
bstrExecBroker
bstrExecInst
bstrInstrument
bstrListingExchange
bstrMaturity
bstrpenClose
bstrPriceType
bstrPutCall
bstrSide
bstrSymbl
bstrTif
bstrText
bstrUnderlyin
g bstrUser
fDiscretion
fLmtPrice
fPegDiff
fStpPrice
fStrikePrice
fTrailAmt
fTrailInc
nDisplay

Type
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
double
double
double
double
double
double
double
long

Description
The account in which the order was sent

The user generated ID of the rejected order (C=Covered,
U=Uncovered)
The destinatin the rejected order was sent to

(YYYYMMDD)
(O=Open, C=Close)
The price type from the rejected order (P=Put, C=Call)
The side of the rejected order The symbol in
the rejected order
The time in force of the rejected order Contains text
information on the Rejection
The underlying symbol of the rejected options order (Client-
Defined field)

The limit price of the rejected order

The display quantity of the rejected order

 StructSTIOrderUpdate Structs (UDT)
Properties (Read Only)
bstrAccount
bstrAction
bstrBatchId
bstrClOrderId
bstrCoverUncover
bstrDestination
bstrExchClOrderId
bstrExchClOrderId
2 bstrExchOrderid
bstrExecBroker
bstrInstrument
bstrLogMessage
bstrMaturity
bstrOpenClose
bstrOrderTime
bstrPriceType
bstrPutCall
bstrSide
bstrSymbol
bstrTif
bstrUnderlying
bstrUpdateTime
bstrUser
bstrUserId
fAvgExecPrice
fDiscreption
fLmtPrice
fPegDiff
fStpPrice
fStrikePrice
fTrailAmt
fTrailInc
fUrStpdPrice
nCumExecQuantity
nDbsNo
nDisplay
nLvsQuantity
nMinQuantity
nOrderRecordId
nOrderStatus
nPriceTyp
e
nQuantity
nSeqNo
nTrailId
bSvrrStpR
eleased

Type
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
double
double
double
double
double
double
double
double
double long
long long
long long
long long
long
long
long
long
VARIANT_BO
OL

Description

(C=Covered, U=Uncovered)

Provides the log messages on an order (YYYYMMDD)
(O=Open, C=Close) (P=Put, C=Call)

(Clinet-defined field) (Trader/Login ID)

StructSTITradeUpdate
Properties (Read Only)
bstrAccount
bstrAction
bstrBatchId
bstrClOrderId
bstrContra
bstrCoverUncover
bstrDestination
bstrExchClorderId
bstrExchExecId
bstrExchOrderId
bstrExchOrderId2
bstrExecBroker
bstrExecInst
bstrInstrument
bstrLiquidity
bstrLogMessage
bstrMaturity
bstrOpenClose
bstrOrderTime
bstrPutCall
bstrSide
bstrSpecialist
bstrSymbol bstrTif
bstrTradeTime
bstrUnderlying
bstrUpdateTime
bstrUserId
fDiscretion
fExecPrice
fLmtPrice
fPegDif fStpPrice
fStrikePrice
nDbsNo
nLvsQuantity
norderRecordId
nPriceType
nQuantity
nmSeqNo
nTradeRecordId
nClearable
nEcnFee

Type
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
BSTR
double
double
double
double
double
double
long long
long long
long long
long
VARIANT_BOOL
VARIANT_BOOL

Description

‘A’=Add, ‘C’=Change, ‘D’=Delete
Used by Order Dest to associate a group of orders Contra

Banker

Database number

STIApp

Methods
HRESULT SwitchLinkGroupSymbol(long nLinkGroup, BSTR bstrSym, BSTR brstExch)

- Sends the symbol into Sterling
Long GetDestinationList(BSTR() arrayDests)
- Oull a list of available destinations BSTR GetTraderName()
1 See STIAcctMaint (on page 17) for GetAccountList()
- Provides the login name of the user, often the same as the account/ BSTR GetServerTime()
Pulls the Time off Sterling DB in this format: CCYYMMDDhhmms

SetModeXML(bool bXML)
Enables the use of XML events.
VARIANT_BOOL ISApiEnabled()
Confirm with API that the trader is entitled to use API.

STIAcctMaint
Events
void OnSTIAcctUpdate(structSTIAcctUpdate* structAcctUpdate) void
OnSTIAcctUpdateXML(BSTR*bstrAcct)
void OnSTIShutdown()

Methods
long GetQueueCount()
long GetAccountList(BSTR() arrayAccts)
STIAcctHRESULT ClearAccountUpdateStruct(structSTIAcctUpdate*pAcctUpdate) HRESULT
Destroy()

structSTIOrderFilter Struct (UDT)
Properties
bstrInstrument bstrSymbol
bstrAccount
bOpenOnly

Type
BSTR BSTR
BSTR
VARIANT_BOOL

Description

structSTITradeFilter Struct (UDT)

Properties
bstrInstrument bstrSymbol
bstrAccount

Type
BSTR BSTR
BSTR

Description

STIRejectReason Enums
Value Reject Description

0 rrSTIUnknown

1 rrSTIUnknownPid

2 rrSTIInvalidPassword

3 rrSTIAccessDenied

4 rrSTINotFound

5 rrSTICannotRoute

6 rrSTIPendingCancel
7 rrSTIPendingReplace

8 rrSTIOrderClosed

9 rrSTICannotCreate

10 rrSTIDupeClOrdId

11 rrSTINoSeqNoAvailable

12 rrSTIInvalidAcct

13 rrSTIInvalidDest Sending a destination that the trader is not enabled for will trigger this.

14 rrSTIError

15 rrSTIDupeSeqNo

16 rrSTINoChange

17 rrSTIInvalidSeqNo

18 rrSTIInvalidQty

19 rrSTITltc Too late to cancel

20 rrSTIShareLimit

21 rrSTIDollarLimit

22 rrSTIBuyingPower

23 rrSTITenSecRule

24 rrSTINotSupported

25 rrSTIDupeAcct

26 rrSTIInvalidGroupId

27 rrSTIDupeStation

28 rrSTIPosTradingLmt

29 rrSTITltcMoc Too late to cancel MOC

30 rrSTIHardToBorrow

31 rrSTIVersion

32 rrSTIDupeLogin

33 rrSTIInvalidSym

34 rrSTINxRules

35 rrSTIBulletNotRequired

36 rrSTIMocMktImb

37 rrSTINx30SecRule

38 rrSTIEasyToBorrowOnly

39 rrSTIStaleOrder

40 rrSTILast

SubmitOrder Error Codes Values

Value
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-33
-34
-35
-36
-37

-38
-39*
-40*
-41*

-42*
-43*
-44
-45
-46
-47
-48

-49*

Error
No Errors
Invalid Account
Invalid Side
Invalid Qty
Invald Symbol
Invalid Price Type
Invalid Tif
Invalid Destination
Exposure Limit Violation
NYSE+ Rules Violation
NYSE+ 30-Second Violation
Diasble SelectNet Short Sales
Long Sale Position Rules Violation
Short Sale Position Rules Violation
GTC Orders Not Enabled
ActiveX API Not Enabled
Sterling Trader Pro is Offline
Security Not Marked as Located
Order Size Violation
Position Limit Violation
Buying Porwer/Margin Control Violationo P/L
Control Violation
Account Not Enabled for this Product
Trader Not Enabled for Futures Minimum
Balance Violatioin
Trader not Enabled for odd lots
Order dollar limit exceeded
Traded Not Enabled for Options
Soft Share limit exceeded
Loss from max profit control violation (Title builds
only)
Desk Quantity enforcement violation
Account not enabled for Sell to Open (Options)
Account allowed to. ‘Close/Cxl’ only
Trader not enabled for security locating
Order not able to obe replaced (ReplaceOrder only)
Trader not enabled for security locating
Invalid Maturity date
Only one cancel and/or replace allowed per
order per second
Account’s maximum position value for this
symbol exceeded
Symbol violates the account’s mini/max price
settings
Quote unavailable to calculate order dollar limit
Quote unavailable to calculate maximum
position cost
Quote unavailable to calculate buying power
Quote unavailable to calculate margin control
Floatiing BP violatiions
Market order would remove liquidity (front end
settings)
Not enabled for server stop orders
Not enabled for trail stop orders
Order would exceed the max open orders per

Description
Order has been accepted by the GUI
The account used is not permissioned for the
login Not a valid side see page 20

Not including a destination in the order will trigger
this

Orders will not be split but a side change will occur
Orders will not be split but a side change will occur

Open or cover transactions

-50

-51

-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68

side on this symbol
Quote unavailable or compliance threshold
exceeded or quote unavailable
Neither last nor close price available for MKT
order
Quote unavailable or does not meet min average
daily volume

CLO Orders not allowed
Option Position Effect Error
Funari
Invalid Desk Price Invalid Price Fields
Board Lot
No Quote Board Lot
Price Tick
No Tick Price Tick
No Quote Price Tick
On Open/OPG Disabled
Order Change Display
No Quote
Stop Orders
Option Risk Levels
Account Disabled
Cannot Trade Options on BP Control

*Note: A quote is needed to calculate the values for symbol min/max price setting, dollar limit, max position cost,
buying power, margin control and the compliance threshold. In order to prevent this rejection simply register for the
quotes using the composite (*) on the symbol before you send the order

STIOrderStatus Enums

Value
0
1

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Order Status
osSTIUnknown
osSTIPendingCancel

osSTIPendingReplace

osSTIDoneForDay
osSTICalculated
osSTIFilled
osSTStopped
osSTISuspended
osSTICanceled
osSTIExpired
osSTIIPartiallyFilled
osSTIReplaced
osSTIRejected
osSTINew
osSTIPendingNew
osSTIAcceptedForBidding
osSTIAdjusted
osSTIStatused

Description

Cancel request received by Sterling DB byt the UROUT
is pending
Replace received by Sterling DB but the replaced
UROUT is pending

Order is completely filled

Order has been confirmed as cancelled

Fill. Has been received byt the order is not completed
Order has been confirmed as replaced
Order is rejected
Order received and conofirmed (open order)
Order received on DB but not confirmed

Order has been manually updated

21

STIPriceTypes Enums
Value
1
2
3
4
5
6
7
8
9
10
11
12
13
14
100
101
102

Price Type
ptSTIMkt
ptSTIMktClo
ptSTIMktOb
ptSTIMktWow
ptSTIlmt
ptSTILmtClo
ptSTILmtStp
ptSTILmtStpLmt
ptSTILmtOb
ptSTIWow
ptSTILmtWow
ptSTIBas
ptSTIClo
ptSTIPegged
ptSTISvrStp
ptSTISvrStpLmt
ptSTITrailStp

Description
Market order

Market on close order
Market or better
Market withut waiting
Limit
Limit on close
Stop order
Stop limit order
Limit or better
Without waiting
Limit without waiting
NYSE basis order
Close order
Peg order
Server side stopo order
Server side stop limit order
Trailing stop order

Side Values

Value
‘B’
‘C’
‘S’
‘T’
‘M’
‘P’
‘E’

Meaning
=BUY
=BUY TO COVER
=SELL
=SSHRT
=BUY-
=SELL+
=SSHRTEX

Tifs Values

Value
‘D’
‘G’
‘X’
‘F’
‘I’
‘O’
‘E’
‘1’
‘A’
‘N’

Maning
=DAY
=GTC
=GTX
=FOK
=IOC
=OPG
=EXT
=OS
=AEX (Auto-x)
=NOW

22

Action
Value
‘A’
‘C’
‘D’
‘S’

Meaning
= Add
= Change
= Delete
= Status

Description

MaintainAccount Error Codes Values
Value
0
-1
-2
-3
-4

Invalid Field
No errors
Pro is offline
Traders are not allowed to maintain accounts
Invalid account
Manager is not entitled to change fields

Instrument Values

Value
“B”
“Non-B”
“E”
“O”
“F”
“X”

Meaning
Bullet Order Bullet Trade Equity Order Equity
Trade Equity
Options Futures
Forex

NxRules (NYSE+ Rules Enforcement) Values
Value
“0”
“1”
“2”

Meaning
Use Sterling. Trader Pro default settings (NYSE+
rules violation settings) Convert the destination
to NYSE is there is a NYSE+ rules violation
Reject the order if there is a NYSE+ rules
violation

Special Order Designations Values

ExecInst
‘E’
‘F’
‘G’
‘M’
‘P’
‘R’
‘T’

Meaning
DNI DNR AON
Pegged Mid-Market Pegged Market Pegged
Primary
Pegged Best

ExecInst (ARCA only) Meaning
‘2’
‘6’

Sweep Reserve
Post no Preference

Note 1: If you want more than one at a time, use thgem together separated by a single space
between each. Order
does not matter. Example: ExecInst = ‘E F G’ (for DNI, DNR, AON)

	Development in Alternative Environments
	Sterling ActiveX API Performance Considerations
	Visual Basic Coding Examples
	Visual C# Coding Examples
	Tracking Orders Using a Client Order ID
	Handling Rejections in the API
	Backward Compatibility and Algos
	Sterling ActiveX Object Library
	STIApp

